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Abstract
Quasicrystals can carry, in addition to the classical phonon displacement
field, a phason displacement field, which requires a generalized theory of
elasticity. In this paper, the third-order strain invariants (including phason
strain) of icosahedral quasicrystals are determined. They are connected with
20 independent third-order elastic constants. By means of non-linear elasticity,
phason strains with icosahedral irreducible �4-symmetry can be obtained by
phonon stress, which is impossible in linear elasticity.

PACS numbers: 61.44.Br, 62.20.Dc

1. Introduction

Apart from the ordinary phonon degrees of freedom, quasicrystals (QC) have phason degrees
of freedom, referring to relative shifts of the constituent density waves [1, 2]. Therefore, and
due to their lack of translational order, quasicrystalline structures are usually constructed as
an irrational cut of a decorated hyperspace structure by physical space E‖ [3, 4]. The phason
degrees of freedom are connected with the displacement field along the orthogonal space
E⊥. The generalized elasticity is described in terms of spatially varying phonon and phason
displacement fields [1, 2].

Icosahedral QC have three phonon and three phason degrees of freedom and associated
components of a displacement field. Linear elastic theory provides five independent second-
order elastic constants, two belonging to pure phonon elasticity, two to pure phason elasticity
and one to a coupling between phonons and phasons.

Within linear phonon elasticity, icosahedral QC behave essentially like isotropic media[5].
Faithful icosahedral symmetry exists for physical properties described by tensors of rank
N � 5 only [6]. Accordingly, the non-linear elasticity of icosahedral QC is anisotropic [7].

Fundamental research on classical non-linear elasticity was performed many years ago
[8, 9]. The authors of [6, 10–13] have already determined the four linearly independent,
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icosahedral elastic tensors of rank six, related to third-order phonon elastic invariants. In
contrast to this, in the isotropic case one has only three independent third-order phonon
elastic invariants, or elastic constants. Ishii [14] has calculated the pure phason third-order
icosahedral invariants. The aim of this paper is to generalize the classical non-linear elasticity
and to determine all third-order icosahedral elastic invariants, which occur when phason strains
are included. The idea leading to this work was to find a possible method to generate phason
�4-strain in icosahedral QC by phonon stress, which is impossible within linear elasticity.

2. Generalized elastic theory of icosahedral QC

According to their icosahedral diffraction pattern, the mass density of icosahedral QC
is a sum of density waves indexed by a reciprocal lattice L of icosahedral symmetry:
ρ(x) = ∑

k∈L ρk exp(ik ·x) = ∑
k∈L |ρk| exp[i(k ·x + φk)]. The phases φk of the

basis vectors of L are six degrees of freedom [2], parametrized by the phonon and phason
displacement fields u and w via φk = φk,0 − k‖ · u − k⊥ · w. Here, k‖ = k and k⊥ are the
projections of reciprocal six-dimensional hyperlattice vectors onto E‖ and E⊥, respectively.
The phonon and phason displacement fields u and w are the projections of the hyperspace
displacement field u ⊕ w onto E‖ and E⊥, respectively.

We denote the position of a point in the undistorted QC a and the corresponding position
in the distorted structure x, where x = u + a. In the Lagrangian scheme, all quantities
depend on the variable a [8]. The phonon strain tensor ηu has its components of the classical
symmetric form

ηu
ij = 1

2

(
∂ui

∂aj

+
∂uj

∂ai

)
+

1

2

∂uk

∂ai

∂uk

∂aj

(1)

or, written in terms of the Jacobian Fij = ∂xi

∂aj
, ηu

ij = 1
2 (FkiFkj − δij ). This strain tensor is free

of rigid rotations. The phason displacement gradient ∂w
∂a

splits into a �4 and a �5 part (see
(9)), and both are assumed to increase the elastic energy [2, 15]. Therefore, we have a phason
strain tensor ηw with

ηw
ij = ∂wi

∂aj

. (2)

In the linear limit
∣∣ ∂ui

∂aj

∣∣ � 1, the components of ηu take their well-known shape ηu
ij =

1
2

(
∂ui

∂aj
+ ∂uj

∂ai

)
.

The isothermal Helmholtz free energy F(ηu,ηw) per undistorted volume can be expanded
into the Taylor series

F = 1
2Cab

ijklη
a
ij η

b
kl + 1

6Cabc
ijklmnη

a
ijη

b
klη

c
mn + · · · = 1

2Cab
ij ηa

i η
b
j + 1

6Cabc
ijk ηa

i η
b
j η

c
k + · · · (3)

with Cab
ijkl being second-order and Cabc

ijklmn third-order Cartesian elastic constants due to Brugger
[16], which is perhaps the most familiar notation (i, j, k, l,m, n ∈ {1, 2, 3}; a, b ∈ {u,w}). In
the right part of (3), the irreducible strain components of appendix A are used. Here we have,
e.g., i ∈ {1, . . . , 6} if a = u and i ∈ {1, . . . , 9} if a = w. Because of the index permutation
symmetries and the symmetries of the QC, not all of these C are independent. If the elastic
energy is to be written with independent elastic constants Cab

i and Cabc
i of second and third

order only, one has to use the invariants Iab
i and I abc

i of the generalized elasticity:

F = Cab
i I ab

i + Cabc
i I abc

i + · · · . (4)

These invariants (and also expansions (3)) must fulfil the condition I (gηu, gηw) = I (ηu,ηw)

for any transformation g of the icosahedral group Y (or Yh). Clearly, symmetries such as
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Iuuw
i = Iuwu

i = · · · and Cuuw
i = Cuwu

i = · · · are assumed to hold. The elastic constants of (3)
follow from appropriate repeated differentiation with respect to components of ηu and ηw .

A generalization of the classical result [16] shows that the generalized Piola–Kirchhoff
stresses tu and tw, which are measured in the undistorted state, have components

taij = ∂F

∂ηa
ij

= Cab
ijklη

b
kl +

1

2
Cabc

ijklmnη
b
klη

c
mn + · · · = Cab

k

∂Iab
k

∂ηa
ij

+ Cabc
k

∂I abc
k

∂ηa
ij

+ · · · . (5)

The irreducible components of tu and tw have the same form as those of ηu and ηw , and it
is tai = ∂F

∂ηa
i

, where the possible pairs of (a, i) are again evident from appendix A. Cauchy
stresses σu and σw are measured in the distorted state. They follow immediately from the
Piola–Kirchhoff stresses [8]. Because E⊥ remains unchanged even for a finite deformation,
the phasonic case must be treated with some care:

σu
ij = �−1FikFjl t

u
kl σw

ij = �−1Fjkt
w
ik (6)

where � = det F .
Since our intention is to produce certain strains by means of applied stresses, we should

rather work with the isothermal Gibbs enthalpy G(tu, tw) [16],

G = Sab
i I ab

i + Sabc
i I abc

i + · · · . (7)

Sab
i and Sabc

i are independent elastic compliances, and the same invariants as in (4) appear, but
this time formulated with components of tu and tw. One obtains the strain–stress relations

ηa
ij = − ∂G

∂taij
= −Sab

ijkl t
b
kl − 1

2
Sabc

ijklmnt
b
kl t

c
mn + · · · = −Sab

k

∂I ab
k

∂taij
− Sabc

k

∂I abc
k

∂taij
− · · · . (8)

The irreducible form hereof is obvious.

3. The elastic invariants

First thing is to note the transformation behaviour of the strain tensors [2], which follows from
the transformation behaviour of vectors in E‖ and E⊥:

u: (�3 ⊗ �3)s = �1 ⊕ �5 w: �3′ ⊗ �3 = �4 ⊕ �5. (9)

Index s means symmetrized. The irreducible components of the strain tensors are given in
appendix A, and the associated transformation matrices are displayed in table A1. They are
deduced from the transformation of the Cartesian strain tensors ηa = ηa

ijη
a
ij , where ηa

ij is a
basis deformation with component ij being 1 and all others 0: gηa = ηa

ij gηa
ij = (gηa)ijη

a
ij ,

where (gηu)ij = D3
ik(g)D3

jl (g)ηu
kl , (gηw)ij = D3′

ik(g)D3
jl (g)ηw

kl and D3(g),D3′
(g) are the

coordinate transformation matrices of table A1.
The characters of symmetrized product representations D = (D̃ ⊗ D̃)s and D =

(D̃ ⊗ D̃ ⊗ D̃)s , respectively, of one and the same representation D̃, which the terms occurring
in (3) transform after, are

χD(g) = 1
2 [χD̃(g)2 + χD̃(g2)] and

(10)
χD(g) = 1

6 [χD̃(g)3 + 3χD̃(g2)χD̃(g) + 2χD̃(g3)].

Herewith, the following Clebsch–Gordan series for the representations acting in the respective
symmetrized product spaces of second-order tensors are straightforward and given below in
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Table 1. Tabulation of symmetrized third-order vector spaces. In the last column, all possible
third-order expressions consisting of irreducible strains, referring to orthonormal basis sets, are
listed.

Dimension dim of Components with respect
Case symmetrized space to an orthonormal basis set

uuu 56
(
ηu

i

)3
,
√

3
(
ηu

i

)2
ηu

j ,
√

6ηu
i ηu

j ηu
k (i 	= j 	= k 	= i)

uuw 189
(
ηu

i

)2
ηw

k ,
√

2ηu
i ηu

j ηw
k (i 	= j)

uww 270 ηu
i

(
ηw

j

)2
,
√

2ηu
i ηw

j ηw
k (j 	= k)

www 165
(
ηw

i

)3
,
√

3
(
ηw

i

)2
ηw

j ,
√

6ηw
i ηw

j ηw
k (i 	= j 	= k 	= i)

the order uu, uw,ww, uuu, uuw, uww,www [17]:

[(�1 ⊕ �5) ⊗ (�1 ⊕ �5)]s = 2�1 ⊕ �4 ⊕ 3�5

(�1 ⊕ �5) ⊗ (�4 ⊕ �5) = �1 ⊕ 2�3 ⊕ 2�3′ ⊕ 4�4 ⊕ 5�5

[(�4 ⊕ �5) ⊗ (�4 ⊕ �5)]s = 2�1 ⊕ �3 ⊕ �3′ ⊕ 3�4 ⊕ 5�5

[(�1 ⊕ �5) ⊗ (�1 ⊕ �5) ⊗ (�1 ⊕ �5)]s = 4�1 ⊕ �3 ⊕ �3′ ⊕ 4�4 ⊕ 6�5 (11)

[(�1 ⊕ �5) ⊗ (�1 ⊕ �5)]s ⊗ (�4 ⊕ �5) = 4�1 ⊕ 8�3 ⊕ 8�3′ ⊕ 13�4 ⊕ 17�5

(�1 ⊕ �5) ⊗ [(�4 ⊕ �5) ⊗ (�4 ⊕ �5)]s = 7�1 ⊕ 11�3 ⊕ 11�3′ ⊕ 18�4 ⊕ 25�5

[(�4 ⊕ �5) ⊗ (�4 ⊕ �5) ⊗ (�4 ⊕ �5)]s = 5�1 ⊕ 7�3 ⊕ 7�3′ ⊕ 12�4 ⊕ 14�5.

We see that we have the following numbers of invariants: 2 (uu), 1 (uw), 2 (ww), 4 (uuu),
4 (uuw), 7 (uww), 5 (www). These numbers have already been calculated in an earlier
work [18].

The second-order invariants can readily be written as simple scalar products ηu,1 · ηu,1,

ηu,5 · ηu,5,ηu,5 · ηw,5,ηw,4 · ηw,4 and ηw,5 · ηw,5 of vectors containing the irreducible strain
components (see appendix A and [19]). Of course, most of the third-order invariants are more
complicated.

In table 1, the symmetrized third-order vector spaces are specified in more detail. Some
terms must be weighted with factors to become components for an orthonormal basis set and to
transform orthogonal among all others. The third-order elastic invariants are the components
for the basis vectors of the identity representation.

Basis vectors for an irreducible group representation αare obtained by means of the projec-
tion operators P α

lk = dα

|G|
∑

g∈G Dα∗
lk (g)D(g) [20], with D(g) being the linear operators acting

on the full (reducible) vector space (see table 1). These projectors have the property P α
lke

β

ij =
δαβδjke

β

il . Here, e
β

ij is a basis vector transforming as the index j of the irreducible

representation β, and 1 � i � n
β

D , where n
β

D is the multiplicity of β in D. To split the
full vector space into subspaces spanned by orthogonal irreducible basis vectors, the vectors
eα

i1 ∈ Im P α
11,e

α
i1 ⊥ eα

j1 for i 	= j , must be calculated. The other basis vectors are then
eα

ij = P α
j1e

α
i1, where i ∈ {

1, . . . , nα
D

}
, j ∈ {2, . . . dα}. The operators D(g) are calculated as

orthogonal transformation matrices for the components of table 1.
Herewith, the third-order invariants can be found directly from the full spaces of

table 1. However, we picked the third-order invariants by the following procedure: calculate
the second-order irreducible components for the irreducible representations �1, �4 and �5

occurring in the first and third series of (11). Then set up all possible invariant scalar products
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with irreducible components of ηu and ηw and throw away linearly occurring dependent
invariants.

Since the components for different irreducible representations do not mix under
transformation, another very elegant method, leading immediately to the ordering with
respect to irreducible representations described below, is to expand the triple products of
(11) completely, for example, [(�4 ⊕ �5) ⊗ (�4 ⊕ �5) ⊗ (�4 ⊕ �5)]s = (�4 ⊗ �4 ⊗ �4)s ⊕
[(�4 ⊗�4)s ⊗ �5] ⊕ [�4 ⊗ (�5 ⊗ �5)s ] ⊕ (�5 ⊗ �5 ⊗�5)s , and search the invariants for each
of the arising triple products of irreducible representations separately.

The third-order invariants are listed in appendix B. They consist of components of as few
different irreducible representations as possible (see table B1). For each of the four cases,
they are orthonormal, i.e.

∑dim
k=1 vi,kvj,k = δij , where dim are the respective numbers in the

second column of table 1 and vi,k is the coefficient of the third-order term k in the invariant i.
Furthermore, we have tried, on the one hand, to choose the invariants as short as possible and,
on the other hand, to bring them to a suitable form for comparing with each other and with the
invariants of [14] (see appendices B and C for details).

4. Discussion

From (11), there are 20 independent third-order elastic invariants, or elastic constants,
describing the non-linear elasticity of icosahedral QC. Since there exist four uuw-invariants,
we have four non-linear phonon–phason couplings. The other third-order invariants are
unsuitable if one wants to generate phason strains or stresses. Despite this, from all the
third-order invariants, the four uuu ones will play the most important role because of their
influence on the phonon wave propagation. To our knowledge, these third-order phonon elastic
constants have not been determined for QC so far.

Generating phason �4-strains from phonon stresses now is possible through the invariant
Iuuw

1 . Due to (8),

ηw
1 = Suuw

1

20

√
30

[
3

(
tu2

)2
+ 3

(
tu3

)2 − 2
(
tu4

)2 − 2
(
tu5

)2 − 2
(
tu6

)2
]

ηw
2 = −Suuw

1

2

√
3

(
2tu3 tu4 +

√
2tu5 tu6

)
(12)

ηw
3 = Suuw

1

2

(
3tu2 tu5 +

√
3tu3 tu5 −

√
6tu4 tu6

)

ηw
4 = −Suuw

1

2

(
3tu2 tu6 −

√
3tu3 tu6 +

√
6tu4 tu5

)
.

Here, a perhaps unexpected factor of 3 is present because of the summation rule in (8).
From (12), it is obvious that phason �4-strains arise from shear stresses tu2 , . . . , tu6 . ηw

1 is
obtained, for example, by applying the stress tu3 ≡ t and all other tuj = 0, ηw

2 by applying
tu3 ≡ t, tu4 ≡ √

3/2t, ηw
3 by applying tu3 ≡ t, tu5 ≡ √

3/2t and ηw
4 via tu3 ≡ t, tu6 ≡ √

3/2t .
The magnitude of an eventually existing phonon �1-stress, which is hydrostatic pressure tu1 ,
has only an indirect effect on the phason �4 strains, due to the pressure dependence of elastic
compliances. Note that the �4-symmetry is unlikely to exist without simultaneous phason
�5-symmetry, which is generated by shear stresses even in the linear, but also in the non-linear
regime according to higher order compliances (see table B1).

Another possibility of obtaining phason �4-strains is, for example, the quartic
electrostriction [22].
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Table A1. Tabulation of the transformation matrices for the icosahedral irreducible representations.
They are given for two appropriate generating elements of Y, i.e. a fivefold rotation C5 and a
threefold C3. τ − 1 = 1

τ
. For Yh, the inversion i must be included. i does not change the strains

[22].

� g = C5 g = C3

�1 ≡ 1 1 1

�3 ≡ 3 1
2


 τ τ − 1 −1

τ − 1 1 τ

1 −τ τ − 1





0 0 1

1 0 0
0 1 0




�3′ ≡ 3′ 1
2


1 − τ −τ −1

−τ 1 1 − τ

1 τ − 1 −τ





0 0 1

1 0 0
0 1 0




�4 ≡ 4 1
4




−1 −√
5

√
5 −√

5

−√
5 −1 −3 −1

−√
5 3 1 −1√

5 1 −1 −3







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0




�5 ≡ 5 1
4




1 −√
3 −√

6 0
√

6

−√
3 −1 −√

2 −2
√

2 −√
2

−√
6 −√

2 2 0 2

0 2
√

2 0 −2 2

−√
6

√
2 −2 2 0




1
2




−1 −√
3 0 0 0√

3 −1 0 0 0
0 0 0 0 2
0 0 2 0 0
0 0 0 2 0




Appendix A. Icosahedral irreducible strains

The icosahedral irreducible strain components given below are from [21]. They refer to
the same coordinate systems as in [15, 19, 22]. In table A1, the icosahedral irreducible
transformation matrices are given, which the irreducible strains and stresses transform after.
Other coordinate systems in use are compared to ours in some detail in [15].

ηu,1 = ηu
1 = 1√

3

(
ηu

11 + ηu
22 + ηu

33

)

ηu,5 =




ηu
2

ηu
3

ηu
4

ηu
5

ηu
6


 =




1
2
√

3

(−τ 2ηu
11 + 1

τ 2 η
u
22 +

(
τ + 1

τ

)
ηu

33

)
1
2

(
1
τ
ηu

11 − τηu
22 + ηu

33

)
1√
2

(
ηu

12 + ηu
21

)
1√
2

(
ηu

23 + ηu
32

)
1√
2

(
ηu

31 + ηu
13

)




(A.1)

ηw,4 =




ηw
1

ηw
2

ηw
3

ηw
4


 = 1√

3




ηw
11 + ηw

22 + ηw
33

1
τ
ηw

21 + τηw
12

1
τ
ηw

32 + τηw
23

1
τ
ηw

13 + τηw
31




ηw,5 =




ηw
5

ηw
6

ηw
7

ηw
8

ηw
9


 = 1√

6




√
3

(
ηw

11 − ηw
22

)
ηw

11 + ηw
22 − 2ηw

33√
2

(
τηw

21 − 1
τ
ηw

12

)
√

2
(
τηw

32 − 1
τ
ηw

23

)
√

2
(
τηw

13 − 1
τ
ηw

31

)




.
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Appendix B. Third-order icosahedral invariants

Iuuu
1 = (

ηu
1

)3

Iuuu
2 = 1

20

√
30

[
−(

ηu
3

)3
+ ηu

3

(
ηu

5

)2
+ ηu

3

(
ηu

6

)2 − 2ηu
3

(
ηu

4

)2
+ 3ηu

3

(
ηu

2

)2

+ 4
√

2ηu
4η

u
5η

u
6 +

√
3ηu

2

(
ηu

5

)2 −
√

3ηu
2

(
ηu

6

)2
]

(B.1)
Iuuu

3 = 1
20

√
10

[(
ηu

2

)3 − 3ηu
2

(
ηu

3

)2 − 3ηu
2

(
ηu

5

)2 − 3ηu
2

(
ηu

6

)2
+ 6ηu

2

(
ηu

4

)2

+ 3
√

3ηu
3

(
ηu

5

)2 − 3
√

3ηu
3

(
ηu

6

)2
]

Iuuu
4 = 1

5

√
15ηu

1

[(
ηu

2

)2
+

(
ηu

3

)2
+

(
ηu

4

)2
+

(
ηu

5

)2
+

(
ηu

6

)2
]

Iuuw
1 = 1

60

√
30

[
2
(
ηu

4

)2
ηw

1 + 2
(
ηu

5

)2
ηw

1 + 2
(
ηu

6

)2
ηw

1 − 3
(
ηu

2

)2
ηw

1 − 3
(
ηu

3

)2
ηw

1

+ 2
√

5ηu
5η

u
6η

w
2 + 2

√
5ηu

4η
u
6η

w
3 + 2

√
5ηu

4η
u
5η

w
4 −

√
10ηu

3η
u
5η

w
3

−
√

10ηu
3ηu

6η
w
4 + 2

√
10ηu

3η
u
4η

w
2 −

√
30ηu

2η
u
5η

w
3 +

√
30ηu

2η
u
6η

w
4

]

Iuuw
2 = 1

60

√
30

[(
ηu

5

)2
ηw

6 +
(
ηu

6

)2
ηw

6 − 2
(
ηu

4

)2
ηw

6 + 2ηu
3η

u
5ηw

8 + 2ηu
3η

u
6η

w
9 + 3

(
ηu

2

)2
ηw

6

− 3
(
ηu

3

)2
ηw

6 − 4ηu
3η

u
4ηw

7 + 6ηu
2η

u
3η

w
5 + 4

√
2ηu

5η
u
6η

w
7 + 4

√
2ηu

4η
u
6η

w
8 (B.2)

+ 4
√

2ηu
4η

u
5η

w
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√
3

(
ηu

5

)2
ηw

5 −
√

3
(
ηu

6

)2
ηw

5 + 2
√

3ηu
2η

u
5η

w
8 − 2

√
3ηu

2ηu
6η

w
9

]

Iuuw
3 = 1

20

√
10

[(
ηu

2

)2
ηw

5 − (
ηu

3

)2
ηw

5 − (
ηu

5

)2
ηw

5 − (
ηu

6

)2
ηw
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.

The invariants comprise strain components of irreducible representations as displayed in
table B1. Note that the following pairs of invariants have exactly the same structure:
Iuuu

2 /Iwww
2 , I uuu

3 /Iwww
3 , I uuu

4 /Iuww
2 , I uuw

1 /Iwww
5 , I uuw

2 /Iuww
3 , I uuw

3 /Iuww
4 , I uww

5 /Iwww
4 .

Furthermore, 3Iuww
3 is obtained from Iwww

2 by replacing all products ηw
i ηw

j ηw
k by ηu

i−3η
w
j ηw

k +

ηw
i ηu

j−3η
w
k + ηw

i ηw
j ηu

k−3. The same is true for 3Iuww
4 and Iwww

3 .
√

6Iuww
6 follows from Iwww

5

by replacing only the phason �5-components in the manner described above.

Appendix C. Relationship to other third-order invariants and elastic isotropy in phonon
space

tr(ηu)3 = 3
√

3Iuuu
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{
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s
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√
3Iuuu
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√
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√
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2 − 5
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√
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3 +
√
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4 (C.1)
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Table B1. Powers of irreducible representation components η
a,α
i in third-order invariants. Possible

combinations are: α = 1, i = 1; α = 5, i = 2, 3, 4, 5, 6 (a = u); α = 4, i = 1, 2, 3, 4;
α = 5, i = 5, 6, 7, 8, 9 (a = w).

(a, α) (u, 1) (u, 5) (w, 4) (w, 5) (u, 1) (u, 5) (w, 4) (w, 5)

I uuu
1 3 I uww

3 1 2
I uuu

2 3 I uww
4 1 2

I uuu
3 3 I uww

5 1 2
I uuu

4 1 2 I uww
6 1 1 1

I uuw
1 2 1 I uww

7 1 1 1
I uuw

2 2 1 Iwww
1 3

I uuw
3 2 1 Iwww

2 3
I uuw

4 1 1 1 Iwww
3 3

I uww
1 1 2 Iwww

4 2 1
I uww

2 1 2 Iwww
5 1 2

[det(ηu)]s = 1
9

√
3Iuuu

1 + 1
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√
30Iuuu

2 − 5
36

√
6Iuuu
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6

√
5Iuuu

4

det(ηw) = 4
9Iwww

1 + 2
9

√
5Iwww

2 − 1
9

√
15Iwww

4 + 1
9

√
30Iwww

5 .

In (C.1), index s denotes that ηu
ij must be replaced by 1

2

(
ηu

ij + ηu
ji

)
. Some of our third-order

invariants are just proportional to ηu
1 times one of the second-order, invariant scalar products

given in section 3. Note that tr(ηw) is not invariant. Our invariants Iuuu
1 and Iuuu

4 are also
O(3)-invariants, while Iuuu

2 and Iuuu
3 must be combined to 3

14

√
14Iuuu

2 − 1
14

√
70Iuuu

3 to give
a linearly independent third O(3)-invariant. In the degenerate case of phononic isotropy, our
elastic constants Cuuu

i can be expressed by sets of classical third-order elastic constants already
in use: Cuuu

1 = √
3
(
l + 1

9n
)
, Cuuu

2 = 1
12

√
30n,Cuuu

3 = − 5
36

√
6n,Cuuu

4 = √
5
(
m− 1

6n
)

[9, 13],

Cuuu
1 = √

3
(

1
2ν1 + ν2 + 4

9ν3
)
, Cuuu

2 = 1
3

√
30ν3, C

uuu
3 = − 5

9

√
6ν3, C

uuu
4 = √

5
(
ν2 + 4

3ν3
)

[23].
Up to normalization factors, the phason third-order invariants I ′

5, I5,J and J ′ of Ishii
[14] are transformed into our Iwww

2 , Iwww
3 , Iwww

4 and Iwww
5 , respectively, by the substitutions

ηw
5 → − 1

4

(√
10ηw

5 +
√

6ηw
6

)
and ηw

6 → 1
4

(−√
6ηw

5 +
√

10ηw
6

)
. This is necessary because in

[14] other irreducible components are used than in [21].
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